English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Substrate specific consequences of central pore mutations in the i-AAA protease Yme1 on substrate engagement

MPS-Authors
/persons/resource/persons129344

Graef,  M.
Graef – Autophagy and Cellular Ageing, Max Planck Research Groups, Max Planck Institute for Biology of Ageing, Max Planck Society;

/persons/resource/persons278030

Langer,  T.
Department Langer - Mitochondrial Proteostasis, Max Planck Institute for Biology of Ageing, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Graef, M., & Langer, T. (2006). Substrate specific consequences of central pore mutations in the i-AAA protease Yme1 on substrate engagement. J Struct Biol, 156(1), 101-8. doi:10.1016/j.jsb.2006.01.009.


Cite as: https://hdl.handle.net/21.11116/0000-000B-7496-9
Abstract
Two membrane-bound ATP-dependent AAA proteases conduct protein quality surveillance in the inner membrane of mitochondria and control crucial steps during mitochondrial biogenesis. AAA domains of proteolytic subunits are critical for the recognition of non-native membrane proteins which are extracted from the membrane bilayer for proteolysis. Here, we have analysed the role of the conserved loop motif YVG, which has been localized to the central pore in other hexameric AAA(+) ring complexes, for the degradation of membrane proteins by the i-AAA protease Yme1. Proteolytic activity was found to depend on the presence of hydrophobic amino acid residues at position 354 within the pore loop of Yme1. Mutations affected proteolysis in a substrate-specific manner: whereas the degradation of misfolded membrane proteins was impaired at a post-binding step, folded substrate proteins did not interact with mutant Yme1. This reflects most likely deficiencies in the ATP-dependent unfolding of substrate proteins, since we observed similar effects for ATPase-deficient Yme1 mutants. Our findings therefore suggest an essential function of the central pore loop for the ATP-dependent translocation of membrane proteins into a proteolytic cavity formed by AAA proteases.