日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Secretome profiling of primary human skeletal muscle cells

MPS-Authors
/persons/resource/persons129648

Franz,  T.
Max Planck Institute for Biology of Ageing, Max Planck Society;

External Resource

https://www.ncbi.nlm.nih.gov/pubmed/23994228
(全文テキスト(全般))

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Hartwig, S., Raschke, S., Knebel, B., Scheler, M., Irmler, M., Passlack, W., Muller, S., Hanisch, F. G., Franz, T., Li, X., Dicken, H. D., Eckardt, K., Beckers, J., de Angelis, M. H., Weigert, C., Haring, H. U., Al-Hasani, H., Ouwens, D. M., Eckel, J., Kotzka, J., & Lehr, S. (2014). Secretome profiling of primary human skeletal muscle cells. Biochim Biophys Acta, 1844(5), 1011-7. doi:10.1016/j.bbapap.2013.08.004.


引用: https://hdl.handle.net/21.11116/0000-000B-9D4D-F
要旨
The skeletal muscle is a metabolically active tissue that secretes various proteins. These so-called myokines have been proposed to affect muscle physiology and to exert systemic effects on other tissues and organs. Yet, changes in the secretory profile may participate in the pathophysiology of metabolic diseases. The present study aimed at characterizing the secretome of differentiated primary human skeletal muscle cells (hSkMC) derived from healthy, adult donors combining three different mass spectrometry based non-targeted approaches as well as one antibody based method. This led to the identification of 548 non-redundant proteins in conditioned media from hSkmc. For 501 proteins, significant mRNA expression could be demonstrated. Applying stringent consecutive filtering using SignalP, SecretomeP and ER_retention signal databases, 305 proteins were assigned as potential myokines of which 12 proteins containing a secretory signal peptide were not previously described. This comprehensive profiling study of the human skeletal muscle secretome expands our knowledge of the composition of the human myokinome and may contribute to our understanding of the role of myokines in multiple biological processes. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.