English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Phosphorylation of SUMO-1 occurs in vivo and is conserved through evolution

MPS-Authors
/persons/resource/persons78370

Matić,  I.
Matic – ADP-ribosylation in DNA Repair and Ageing, Research Groups, Max Planck Institute for Biology of Ageing, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Matić, I., Macek, B., Hilger, M., Walther, T. C., & Mann, M. (2008). Phosphorylation of SUMO-1 occurs in vivo and is conserved through evolution. J Proteome Res, 7(9), 4050-7. doi:10.1021/pr800368m.


Cite as: https://hdl.handle.net/21.11116/0000-000B-811D-3
Abstract
Protein dynamics is regulated by an elaborate interplay between different post-translational modifications. Ubiquitin and ubiquitin-like proteins (Ubls) are small proteins that are covalently conjugated to target proteins with important functional consequences. One such modifier is SUMO, which mainly modifies nuclear proteins. SUMO contains a unique N-terminal arm not present in ubiquitin and other Ubls, which functions in the formation of SUMO polymers. Here, we unambiguously show that serine 2 of the endogenous SUMO-1 N-terminal protrusion is phosphorylated in vivo using very high mass accuracy mass spectrometry at both the MS and the MS/MS level and complementary fragmentation techniques. Strikingly, we detected the same phosphorylation in yeast, Drosophila and human cells, suggesting an evolutionary conserved function for this modification. The nearly identical human SUMO-2 and SUMO-3 isoforms differ in serine 2; thus, only SUMO-3 could be phosphorylated at this position. Our finding that SUMO can be modified may point to an additional level of complexity through modifying a protein-modifier.