English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Integrin-linked kinase regulates the niche of quiescent epidermal stem cells

MPS-Authors
/persons/resource/persons129454

Morgner,  J.
Wickström – Skin Homeostasis and Ageing, Max Planck Research Groups, Max Planck Institute for Biology of Ageing, Max Planck Society;

/persons/resource/persons129450

Ghatak,  S.
Wickström – Skin Homeostasis and Ageing, Max Planck Research Groups, Max Planck Institute for Biology of Ageing, Max Planck Society;

/persons/resource/persons129352

Dieterich,  C.
Dieterich – Computational RNA Biology and Ageing, Research Groups, Max Planck Institute for Biology of Ageing, Max Planck Society;

/persons/resource/persons129350

Wickström,  S. A.
Wickström – Skin Homeostasis and Ageing, Max Planck Research Groups, Max Planck Institute for Biology of Ageing, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Morgner, J., Ghatak, S., Jakobi, T., Dieterich, C., Aumailley, M., & Wickström, S. A. (2015). Integrin-linked kinase regulates the niche of quiescent epidermal stem cells. Nat Commun, 6, 8198. doi:10.1038/ncomms9198.


Cite as: https://hdl.handle.net/21.11116/0000-000B-7ACB-8
Abstract
Stem cells reside in specialized niches that are critical for their function. Quiescent hair follicle stem cells (HFSCs) are confined within the bulge niche, but how the molecular composition of the niche regulates stem cell behaviour is poorly understood. Here we show that integrin-linked kinase (ILK) is a key regulator of the bulge extracellular matrix microenvironment, thereby governing the activation and maintenance of HFSCs. ILK mediates deposition of inverse laminin (LN)-332 and LN-511 gradients within the basement membrane (BM) wrapping the hair follicles. The precise BM composition tunes activities of Wnt and transforming growth factor-beta pathways and subsequently regulates HFSC activation. Notably, reconstituting an optimal LN microenvironment restores the altered signalling in ILK-deficient cells. Aberrant stem cell activation in ILK-deficient epidermis leads to increased replicative stress, predisposing the tissue to carcinogenesis. Overall, our findings uncover a critical role for the BM niche in regulating stem cell activation and thereby skin homeostasis.