English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Meta-analysis of 49 549 individuals imputed with the 1000 Genomes Project reveals an exonic damaging variant in ANGPTL4 determining fasting TG levels

MPS-Authors
/persons/resource/persons276058

Deelen,  J.
Deelen – Genetics and Biomarkers of Human Ageing, Research Groups, Max Planck Institute for Biology of Ageing, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

van Leeuwen, E. M., Sabo, A., Bis, J. C., Huffman, J. E., Manichaikul, A., Smith, A. V., et al. (2016). Meta-analysis of 49 549 individuals imputed with the 1000 Genomes Project reveals an exonic damaging variant in ANGPTL4 determining fasting TG levels. J Med Genet, 53(7), 441-9. doi:10.1136/jmedgenet-2015-103439.


Cite as: https://hdl.handle.net/21.11116/0000-000B-6BE0-0
Abstract
BACKGROUND: So far, more than 170 loci have been associated with circulating lipid levels through genome-wide association studies (GWAS). These associations are largely driven by common variants, their function is often not known, and many are likely to be markers for the causal variants. In this study we aimed to identify more new rare and low-frequency functional variants associated with circulating lipid levels. METHODS: We used the 1000 Genomes Project as a reference panel for the imputations of GWAS data from approximately 60 000 individuals in the discovery stage and approximately 90 000 samples in the replication stage. RESULTS: Our study resulted in the identification of five new associations with circulating lipid levels at four loci. All four loci are within genes that can be linked biologically to lipid metabolism. One of the variants, rs116843064, is a damaging missense variant within the ANGPTL4 gene. CONCLUSIONS: This study illustrates that GWAS with high-scale imputation may still help us unravel the biological mechanism behind circulating lipid levels.