English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The membrane scaffold SLP2 anchors a proteolytic hub in mitochondria containing PARL and the i-AAA protease YME1L

MPS-Authors
/persons/resource/persons276056

Nolte,  H.
Department Langer - Mitochondrial Proteostasis, Max Planck Institute for Biology of Ageing, Max Planck Society;

/persons/resource/persons281120

Sprenger,  Hans-Georg
Sprenger – Molecular Metabolism & Energy Homeostasis, Max Planck Research Groups, Max Planck Institute for Biology of Ageing, Max Planck Society;

/persons/resource/persons278030

Langer,  T.
Department Langer - Mitochondrial Proteostasis, Max Planck Institute for Biology of Ageing, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Wai, T., Saita, S., Nolte, H., Muller, S., Konig, T., Richter-Dennerlein, R., et al. (2016). The membrane scaffold SLP2 anchors a proteolytic hub in mitochondria containing PARL and the i-AAA protease YME1L. EMBO Rep, 17(12), 1844-1856. doi:10.15252/embr.201642698.


Cite as: https://hdl.handle.net/21.11116/0000-000B-6957-E
Abstract
The SPFH (stomatin, prohibitin, flotillin, HflC/K) superfamily is composed of scaffold proteins that form ring-like structures and locally specify the protein-lipid composition in a variety of cellular membranes. Stomatin-like protein 2 (SLP2) is a member of this superfamily that localizes to the mitochondrial inner membrane (IM) where it acts as a membrane organizer. Here, we report that SLP2 anchors a large protease complex composed of the rhomboid protease PARL and the i-AAA protease YME1L, which we term the SPY complex (for SLP2-PARL-YME1L). Association with SLP2 in the SPY complex regulates PARL-mediated processing of PTEN-induced kinase PINK1 and the phosphatase PGAM5 in mitochondria. Moreover, SLP2 inhibits the stress-activated peptidase OMA1, which can bind to SLP2 and cleaves PGAM5 in depolarized mitochondria. SLP2 restricts OMA1-mediated processing of the dynamin-like GTPase OPA1 allowing stress-induced mitochondrial hyperfusion under starvation conditions. Together, our results reveal an important role of SLP2 membrane scaffolds for the spatial organization of IM proteases regulating mitochondrial dynamics, quality control, and cell survival.