Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Implications of a matter-antimatter mass asymmetry in Penning-trap experiments

MPG-Autoren
/persons/resource/persons30768

Lindner,  Manfred
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons265629

Sen,  Manibrata
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2210.10819.pdf
(Preprint), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Cheng, T., Lindner, M., & Sen, M. (2022). Implications of a matter-antimatter mass asymmetry in Penning-trap experiments. arXiv, 2210.10819. doi:10.48550/arXiv.2210.10819.


Zitierlink: https://hdl.handle.net/21.11116/0000-000B-6CC6-D
Zusammenfassung
The Standard Model (SM) of particle physics, being a local, unitary and
Lorentz-invariant quantum field theory, remains symmetric under the combined
action of Charge, Parity, and Time Reversal (CPT) symmetry. This automatically
implies that fundamental properties of particles and antiparticles should be
equal in magnitude. These fundamental tenets of the CPT principle have been put
to stringent tests in recent Penning-trap experiments, where the
matter-antimatter mass asymmetry has been measured. In light of these recent
advances, we compare the bounds arising on CPT invariance from kaon systems
with those from Penning-trap experiments. Using a simple yet powerful argument
of mass decomposition of hadrons, we show that bounds on quark-antiquark mass
differences from kaon oscillations are way beyond the reach of Penning-trap
experiments. We discuss possible reformulations of our understanding of the SM
in the case of a discovery of CPT violation by these precision experiments. We
find that in most cases, these extensions are quite exotic, and require
significant fine-tuning to preserve micro-causality.