English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Sublytic gasdermin-D pores captured in atomistic molecular simulations

MPS-Authors
/persons/resource/persons263441

Schaefer,  Stefan L.       
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons15259

Hummer,  Gerhard       
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;
Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany;

External Resource

Link
(Any fulltext)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schaefer, S. L., & Hummer, G. (2022). Sublytic gasdermin-D pores captured in atomistic molecular simulations. eLife, 11: e81432. doi:10.7554/eLife.81432.


Cite as: https://hdl.handle.net/21.11116/0000-000B-7089-C
Abstract
Gasdermin-D (GSDMD) is the ultimate effector of pyroptosis, a form of programmed cell death associated with pathogen invasion and inflammation. After proteolytic cleavage by caspases, the GSDMD N-terminal domain (GSDMDNT) assembles on the inner leaflet of the plasma membrane and induces the formation of membrane pores. We use atomistic molecular dynamics simulations to study GSDMDNT monomers, oligomers, and rings in an asymmetric plasma membrane mimetic. We identify distinct interaction motifs of GSDMDNT with phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) and phosphatidylserine (PS) headgroups and describe their conformational dependence. Oligomers are stabilized by shared lipid binding sites between neighboring monomers acting akin to double-sided tape. We show that already small GSDMDNT oligomers support stable, water-filled and ion-conducting membrane pores bounded by curled beta-sheets. In large-scale simulations, we resolve the process of pore formation from GSDMDNT arcs and lipid efflux from partial rings. We find that high-order GSDMDNT oligomers can crack under the line tension of 86 pN created by an open membrane edge to form the slit pores or closed GSDMDNT rings seen in experiment. Our simulations provide a detailed view of key steps in GSDMDNT-induced plasma membrane pore formation, including sublytic pores that explain nonselective ion flux during early pyroptosis.