English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The equilibration time course of [K+]0 in cat cortex

MPS-Authors
/persons/resource/persons15570

Neher,  Erwin       
Department of Membrane Biophysics, MPI for Biophysical Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lux, H., & Neher, E. (1973). The equilibration time course of [K+]0 in cat cortex. Experimental Brain Research, 17(2), 190-205. doi:10.1007/BF00235028.


Cite as: https://hdl.handle.net/21.11116/0000-000B-7561-4
Abstract
Steady state and transient values of intracortical potassium were measured with K+ sensitive microelectrodes. Resting intracortical K+ activity is low and resembles that of cerebrospinal fluid. Elevation of intracortical K+ was brought about by electrophoretic injection of K+ by a constant current source from a KCl containing micropipette at fixed distances from the recording electrode. The intracortical K+ responses to electrophoretic K+ injection were compared with those in a medium of 150 mM/l NaCl plus 3 mM/l KCl. The dependence of intracortical K+ steady state levels on electrophoretic currents is nearly linear, but the K+ response in the cortex was about six times higher than in saline. Half times (T1/2) of the rising and falling phases of K+ during current steps were found to be prolonged by the same degree in the cortex. The distribution of [K+]0 appears to be dominated by free diffusion with an apparent diffusion coefficient of 1/6 that in the medium. Primarily diffusional redistribution may also apply to K+ which is released by direct cortical stimulation. K+ released by brief stimulation distributes faster than K+ during and after prolonged continuous stimulation with average T1/2 of 1.2 and 3.0 sec respectively in accordance with diffusion from instantaneous and continuous point sources. For small [K+]0 changes, deviations from diffusional kinetics were found to be about one-fifth of absolute [K+]0 values and became predominant at times longer than 10 T1/2. They can be ascribed to K+ uptake mechanisms. DC recorded cortical surface potentials reveal close relations to the slopes of intracortical potassium activity.