Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Preprint

Topology-dependent coalescence controls scaling exponents in finite networks

MPG-Autoren
/persons/resource/persons215938

Zeraati,  R       
Institutional Guests, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons263156

Buendía,  V       
Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons173580

Levina,  A       
Institutional Guests, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen

https://arxiv.org/pdf/2211.06296.pdf
(beliebiger Volltext)

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zeraati, R., Buendía, V., Engel, T., & Levina, A. (submitted). Topology-dependent coalescence controls scaling exponents in finite networks.


Zitierlink: https://hdl.handle.net/21.11116/0000-000B-750E-3
Zusammenfassung
Multiple studies of neural avalanches across different data modalities led to the prominent hypothesis that the brain operates near a critical point. The observed exponents often indicate the mean-field directed-percolation universality class, leading to the fully-connected or random network models to study the avalanche dynamics. However, the cortical networks have distinct non-random features and spatial organization that is known to affect the critical exponents. Here we show that distinct empirical exponents arise in networks with different topology and depend on the network size. In particular, we find apparent scale-free behavior with mean-field exponents appearing as quasi-critical dynamics in structured networks. This quasi-critical dynamics cannot be easily discriminated from an actual critical point in small networks. We find that the local coalescence in activity dynamics can explain the distinct exponents. Therefore, both topology and system size should be considered when assessing criticality from empirical observables.