Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Scaling between magnetic field and temperature in the high-temperature superconductor BaFe2(As1-xPx)2

There are no MPG-Authors in the publication available
External Resource

(Publisher version)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Hayes, I. M., McDonald, R. D., Breznay, N. P., Helm, T., Moll, P. J. W., Wartenbe, M., et al. (2016). Scaling between magnetic field and temperature in the high-temperature superconductor BaFe2(As1-xPx)2. Nature Physics, 12(10), 916-919. doi:10.1038/NPHYS3773.

Cite as: https://hdl.handle.net/21.11116/0000-000B-7959-A
Many exotic metallic systems have a resistivity that varies linearly with temperature, and the physics behind this is thought to be connected to high-temperature superconductivity in the cuprates and iron pnictides1,2,3,4,5,6,7,8,9. Although this phenomenon has attracted considerable attention, it is unclear how the relevant physics manifests in other transport properties, for example their response to an applied magnetic field. We report measurements of the high-field magnetoresistance of the iron pnictide superconductor BaFe2(As1-xPx)2 and find that it obeys an unusual scaling relationship between applied magnetic field and temperature, with a conversion factor given simply by the ratio of the Bohr magneton and the Boltzmann constant. This suggests that magnetic fields probe the same physics that gives rise to the T-linear resistivity, providing a new experimental clue to this long-standing puzzle.