English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Uniaxial pressure control of competing orders in a high-temperature superconductor

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kim, H.-H., Souliou, S. M., Barber, M. E., Lefrançois, E., Minola, M., Tortora, M., et al. (2018). Uniaxial pressure control of competing orders in a high-temperature superconductor. Science, 362(6418), 1040-1044. doi:10.1126/science.aat4708.


Cite as: https://hdl.handle.net/21.11116/0000-000B-783D-B
Abstract
Cuprates exhibit antiferromagnetic, charge density wave (CDW), and high-temperature superconducting ground states that can be tuned by means of doping and external magnetic fields. However, disorder generated by these tuning methods complicates the interpretation of such experiments. Here, we report a high-resolution inelastic x-ray scattering study of the high-temperature superconductor YBa2Cu2O6.67 under uniaxial stress, and we show that a three-dimensional long-range-ordered CDW state can be induced through pressure along the a axis, in the absence of magnetic fields. A pronounced softening of an optical phonon mode is associated with the CDW transition. The amplitude of the CDW is suppressed below the superconducting transition temperature, indicating competition with superconductivity. The results provide insights into the normal-state properties of cuprates and illustrate the potential of uniaxial-pressure control of competing orders in quantum materials.