English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Microscopic and biochemical monitoring of endosomal trafficking and extracellular vesicle secretion in an endogenous in vivo model

MPS-Authors
/persons/resource/persons182306

Möbius,  Wiebke
Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

/persons/resource/persons85543

Lenz,  Christof
Research Group of Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

J of Extracellular Vesicle - 2022.pdf
(Publisher version), 12MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Linnemannstöns, K., Karuna M, P., Witte, L., Choezom, D., Honemann-Capito, M., Lagurin, A. S., et al. (2022). Microscopic and biochemical monitoring of endosomal trafficking and extracellular vesicle secretion in an endogenous in vivo model. Journal of extracellular vesicles, 11(9): 12263. doi:10.1002/jev2.12263.


Cite as: https://hdl.handle.net/21.11116/0000-000B-7BAE-8
Abstract
Extracellular vesicle (EV) secretion enables cell–cell communication in multicellular organisms. During development, EV secretion and the specific loading of signalling factors in EVs contributes to organ development and tissue differentiation. Here, we present an in vivo model to study EV secretion using the fat body and the haemolymph of the fruit fly, Drosophila melanogaster. The system makes use of tissue-specific EV labelling and is amenable to genetic modification by RNAi. This allows the unique combination of microscopic visualisation of EVs in different organs and quantitative biochemical purification to study how EVs are generated within the cells and which factors regulate their secretion in vivo. Characterisation of the system revealed that secretion of EVs from the fat body is mainly regulated by Rab11 and Rab35, highlighting the importance of recycling Rab GTPase family members for EV secretion. We furthermore discovered a so far unknown function of Rab14 along with the kinesin Klp98A in EV biogenesis and secretion.