English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

SyConn2: Dense synaptic connectivity inference for volume electron microscopy

MPS-Authors
/persons/resource/persons208338

Schubert,  Philipp J.
Department: Electrons-Photons-Neurons / Denk, MPI of Neurobiology, Max Planck Society;
Research Group: Circuits of Birdsong / Kornfeld, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons208333

Dorkenwald,  Sven
Department: Electrons-Photons-Neurons / Denk, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons281991

Klimesch,  Jonathan
Department: Electrons-Photons-Neurons / Denk, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons118241

Svara,  Fabian
Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior – caesar, Max Planck Society;

/persons/resource/persons281993

Mancu,  Andrei
Research Group: Circuits of Birdsong / Kornfeld, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons281995

Ahmad,  Hashir
Research Group: Circuits of Birdsong / Kornfeld, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons125729

Kornfeld,  Jörgen
Research Group: Circuits of Birdsong / Kornfeld, MPI of Neurobiology, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

s41592-022-01624-x.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Schubert, P. J., Dorkenwald, S., Januszewski, M., Klimesch, J., Svara, F., Mancu, A., et al. (2022). SyConn2: Dense synaptic connectivity inference for volume electron microscopy. Nature Methods, 19, 1367-1370. doi:10.1038/s41592-022-01624-x.


Cite as: https://hdl.handle.net/21.11116/0000-000C-0072-3
Abstract
The ability to acquire ever larger datasets of brain tissue using volume
electron microscopy leads to an increasing demand for the automated
extraction of connectomic information. We introduce SyConn2, an
open-source connectome analysis toolkit, which works with both on-site
high-performance compute environments and rentable cloud computing
clusters. SyConn2 was tested on connectomic datasets with more
than 10 million synapses, provides a web-based visualization interface
and makes these data amenable to complex anatomical and neuronal
connectivity queries.