English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

JAK-STAT signaling in inflammatory breast cancer enables chemotherapy-resistant cell states

MPS-Authors
/persons/resource/persons203770

Meissner,  Alexander       
Dept. of Genome Regulation (Head: Alexander Meissner), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

CancerRes_Stevens et al_2022.pdf
(Publisher version), 21MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Stevens, L. E., Peluffo, G., Qiu, X., Temko, D., Fassl, A., Li, Z., et al. (2023). JAK-STAT signaling in inflammatory breast cancer enables chemotherapy-resistant cell states. Cancer research: an official organ of the American Association for Cancer Research, 83(2), 264-284. doi:10.1158/0008-5472.CAN-22-0423.


Cite as: https://hdl.handle.net/21.11116/0000-000B-9775-7
Abstract
Inflammatory breast cancer (IBC) is a difficult-to-treat disease with poor clinical outcomes due to high risk of metastasis and resistance to treatment. In breast cancer, CD44+CD24- cells possess stem cell-like features and contribute to disease progression, and we previously described a CD44+CD24-pSTAT3+ breast cancer cell subpopulation that is dependent on JAK2/STAT3 signaling. Here we report that CD44+CD24- cells are the most frequent cell-type in IBC and are commonly pSTAT3+. Combination of JAK2/STAT3 inhibition with paclitaxel decreased IBC xenograft growth more than either agent alone. IBC cell lines resistant to paclitaxel and doxorubicin were developed and characterized to mimic therapeutic resistance in patients. Multi-omic profiling of parental and resistant cells revealed enrichment of genes associated with lineage identity and inflammation in chemotherapy resistant derivatives. Integrated pSTAT3 ChIP-seq and RNA-seq analyses showed pSTAT3 regulates genes related to inflammation and epithelial to mesenchymal transition (EMT) in resistant cells, as well as PDE4A, a cAMP-specific phosphodiesterase. Metabolomic characterization identified elevated cAMP signaling and CREB as a candidate therapeutic target in IBC. Investigation of cellular dynamics and heterogeneity at the single cell level during chemotherapy and acquired resistance by CyTOF and single cell RNA-seq identified mechanisms of resistance including a shift from luminal to basal/mesenchymal cell states through selection for rare pre-existing subpopulations or an acquired change. Lastly, combination treatment with paclitaxel and JAK2/STAT3 inhibition prevented the emergence of the mesenchymal chemo-resistant subpopulation. These results provide mechanistic rational for combination of chemotherapy with inhibition of JAK2/STAT3 signaling as a more effective therapeutic strategy in IBC.