English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Genetic variations within human gained enhancer elements affect human brain sulcal morphology.

MPS-Authors
/persons/resource/persons180272

Tilot,  Amanda K.
Language and Genetics Department, MPI for Psycholinguistics, Max Planck Society;

/persons/resource/persons4427

Fisher,  Simon E.
Language and Genetics Department, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)

Lemaitre_etal_2022suppl..docx
(Supplementary material), 513KB

Citation

Lemaitre, H., Le Guen, Y., Tilot, A. K., Stein, J. L., Philippe, C., Mangin, J.-F., et al. (2023). Genetic variations within human gained enhancer elements affect human brain sulcal morphology. NeuroImage, 265: 119773. doi:10.1016/j.neuroimage.2022.119773.


Cite as: https://hdl.handle.net/21.11116/0000-000B-9A13-2
Abstract
The expansion of the cerebral cortex is one of the most distinctive changes in the evolution of the human brain. Cortical expansion and related increases in cortical folding may have contributed to emergence of our capacities for high-order cognitive abilities. Molecular analysis of humans, archaic hominins, and non-human primates has allowed identification of chromosomal regions showing evolutionary changes at different points of our phylogenetic history. In this study, we assessed the contributions of genomic annotations spanning 30 million years to human sulcal morphology measured via MRI in more than 18,000 participants from the UK Biobank. We found that variation within brain-expressed human gained enhancers, regulatory genetic elements that emerged since our last common ancestor with Old World monkeys, explained more trait heritability than expected for the left and right calloso-marginal posterior fissures and the right central sulcus. Intriguingly, these are sulci that have been previously linked to the evolution of locomotion in primates and later on bipedalism in our hominin ancestors.