English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Axonal guidance by an avoidance mechanism

MPS-Authors
/persons/resource/persons283790

Walter,  J
Department Physical Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons283705

Müller,  B       
Department Physical Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons274230

Bonhoeffer,  F
Department Physical Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Walter, J., Müller, B., & Bonhoeffer, F. (1990). Axonal guidance by an avoidance mechanism. Journal of Physiology (Paris), 84(1), 104-110.


Cite as: https://hdl.handle.net/21.11116/0000-000B-9DED-A
Abstract
1. On a substrate consisting of alternating lanes of anterior and posterior tectal membranes, temporal retinal axons have a strong tendency to grow on the lanes of anterior membranes and to avoid the lanes of posterior membranes. 2. Temporal axons do extend neurites on posterior material, and in equivalent numbers and lengths to that of anterior membranes if the substrate consists of pure anterior or posterior membranes. 3. Inactivation of posterior membranes by heat or the enzyme phosphatidylinositol-specific phospholipase C (PI-PLC) abolishes their ability to induce the avoidance reaction of temporal axons. It is concluded that the posterior membranes contain a repulsive component for temporal retinal axons. 4. Growth cones growing on anterior membranes, which encounter posterior membranes at the strip boundary, in general do not become reduced in their growth rate. 5. These results are most easily explained by a "gradient-reading model" similar to chemotaxis where the steering of a growth cone is independent on the growth rate. 6. According to the model, a gradient of a guiding component outside the growth cone is transformed into an internal gradient which gives the growth cone its directionality. 7. Other models like growth inhibition cannot be ruled out but need at least two additional assumptions like habituation for growth on the putative posterior inhibitory substrate and a strong local restriction of the inhibitory effect within the growth cone which contacts the posterior material.