Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Preprint

Core dimensions of human material perception

MPG-Autoren
/persons/resource/persons242545

Hebart,  Martin N.       
Max Planck Research Group Vision and Computational Cognition, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Schmidt_Hebart_pre.pdf
(Preprint), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schmidt, F., Hebart, M. N., Schmid, A. a. C., & Fleming, R. W. (2022). Core dimensions of human material perception. PsyArXiv. doi:10.31234/osf.io/jz8ks.


Zitierlink: https://hdl.handle.net/21.11116/0000-000B-A7C4-B
Zusammenfassung
Visually categorizing and comparing materials is crucial for our everyday behaviour. Given the dramatic variability in their visual appearance and functional significance, what organizational principles underly the internal representation of materials? To address this question, here we use a large-scale data-driven approach to uncover the core latent dimensions in our mental representation of materials. In a first step, we assembled a new image dataset (STUFF dataset) consisting of 600 photographs of 200 systematically sampled material classes. Next, we used these images to crowdsource 1.87 million triplet similarity judgments. Based on the responses, we then modelled the assumed cognitive process underlying these choices by quantifying each image as a sparse, non-negative vector in a multidimensional embedding space. The resulting embedding predicted material similarity judgments in an independent test set close to the human noise ceiling and accurately reconstructed the similarity matrix of all 600 images in the STUFF dataset. We found that representations of individual material images were captured by a combination of 36 material dimensions that were highly reproducible and interpretable, comprising perceptual (e.g., “grainy”, “blue”) as well as conceptual (e.g., “mineral”, “viscous”) dimensions. These results have broad implications for understanding material perception, its natural dimensions, and our ability to organize materials into classes.