English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Role of precursor translocation in coordination of murein and phospholipid synthesis in Escherichia coli

MPS-Authors
/persons/resource/persons284213

Ehlert,  K
Department Biochemistry, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons284215

Höltje,  J-V
Department Biochemistry, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ehlert, K., & Höltje, J.-V. (1996). Role of precursor translocation in coordination of murein and phospholipid synthesis in Escherichia coli. Journal of Bacteriology, 178(23), 6766-6771. doi:10.1128/jb.178.23.6766-6771.1996.


Cite as: https://hdl.handle.net/21.11116/0000-000B-B5AD-6
Abstract
Inhibition of phospholipid synthesis in Escherichia coli by either cerulenin treatment or glycerol starvation of a glycerol-auxotrophic mutant resulted in a concomitant block of murein synthesis. The intracellular pool of cytoplasmic and lipid-linked murein precursors was not affected by an inhibition of phospholipid synthesis, nor was the activity of the penicillin-binding proteins. In addition, a decrease in the activity of the two lipoprotein murein hydrolases, the lytic transglycosylases A and B, could not be demonstrated. The indirect inhibition of murein synthesis by cerulenin resulted in a 68% decrease of trimeric muropeptide structures, proposed to represent the attachment points of newly added murein. Importantly, inhibition of phospholipid synthesis also inhibited O-antigen synthesis with a sensitivity and kinetics similar to those of murein synthesis. It is concluded that the step common for murein and O-antigen synthesis, the translocation of the respective bactoprenolphosphate-linked precursor molecules, is affected by an inhibition of phospholipid synthesis. Consistent with this assumption, it was shown that murein synthesis no longer depends on ongoing phospholipid synthesis in ether-permeabilized cells. We propose that the assembly of a murein-synthesizing machinery, a multienzyme complex consisting of murein hydrolases and synthases, at specific sites of the membrane, where integral membrane proteins such as RodA and FtsW facilitate the translocation of the lipid-linked murein precursors to the periplasm, depends on ongoing phospholipid synthesis. This would explain the well-known phenomenon that both murein synthesis and antibiotic-induced autolysis depend on phospholipid synthesis and thereby indirectly on the stringent control.