English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The impact of genomic variation on protein phosphorylation states and regulatory networks

MPS-Authors
/persons/resource/persons129442

Schütter,  M.
Graef – Autophagy and Cellular Ageing, Max Planck Research Groups, Max Planck Institute for Biology of Ageing, Max Planck Society;

/persons/resource/persons277986

Mawer,  J. S. P.
Tessarz – Chromatin and Ageing, Max Planck Research Groups, Max Planck Institute for Biology of Ageing, Max Planck Society;

/persons/resource/persons277960

Tessarz,  P.
Tessarz – Chromatin and Ageing, Max Planck Research Groups, Max Planck Institute for Biology of Ageing, Max Planck Society;

/persons/resource/persons129344

Graef,  M.
Graef – Autophagy and Cellular Ageing, Max Planck Research Groups, Max Planck Institute for Biology of Ageing, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Grossbach, J., Gillet, L., Clement-Ziza, M., Schmalohr, C. L., Schubert, O. T., Schütter, M., et al. (2022). The impact of genomic variation on protein phosphorylation states and regulatory networks. Mol Syst Biol, 18(5), e10712. doi:10.15252/msb.202110712.


Cite as: https://hdl.handle.net/21.11116/0000-000B-BA62-5
Abstract
Genomic variation impacts on cellular networks by affecting the abundance (e.g., protein levels) and the functional states (e.g., protein phosphorylation) of their components. Previous work has focused on the former, while in this context, the functional states of proteins have largely remained neglected. Here, we generated high-quality transcriptome, proteome, and phosphoproteome data for a panel of 112 genomically well-defined yeast strains. Genetic effects on transcripts were generally transmitted to the protein layer, but specific gene groups, such as ribosomal proteins, showed diverging effects on protein levels compared with RNA levels. Phosphorylation states proved crucial to unravel genetic effects on signaling networks. Correspondingly, genetic variants that cause phosphorylation changes were mostly different from those causing abundance changes in the respective proteins. Underscoring their relevance for cell physiology, phosphorylation traits were more strongly correlated with cell physiological traits such as chemical compound resistance or cell morphology, compared with transcript or protein abundance. This study demonstrates how molecular networks mediate the effects of genomic variants to cellular traits and highlights the particular importance of protein phosphorylation.