English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

GFPT2/GFAT2 and AMDHD2 act in tandem to control the hexosamine pathway

MPS-Authors
/persons/resource/persons281253

Kroef,  V.
Denzel – Metabolic and Genetic Regulation of Ageing, Research Groups, Max Planck Institute for Biology of Ageing, Max Planck Society;

/persons/resource/persons278021

Ruegenberg,  S.
Denzel – Metabolic and Genetic Regulation of Ageing, Research Groups, Max Planck Institute for Biology of Ageing, Max Planck Society;

/persons/resource/persons130765

Horn,  M.
Denzel – Metabolic and Genetic Regulation of Ageing, Research Groups, Max Planck Institute for Biology of Ageing, Max Planck Society;

/persons/resource/persons278014

Allmeroth,  K.
Denzel – Metabolic and Genetic Regulation of Ageing, Research Groups, Max Planck Institute for Biology of Ageing, Max Planck Society;

/persons/resource/persons281218

Miethe,  S.
Denzel – Metabolic and Genetic Regulation of Ageing, Research Groups, Max Planck Institute for Biology of Ageing, Max Planck Society;

/persons/resource/persons179771

Denzel,  M. S.
Denzel – Metabolic and Genetic Regulation of Ageing, Research Groups, Max Planck Institute for Biology of Ageing, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kroef, V., Ruegenberg, S., Horn, M., Allmeroth, K., Ebert, L., Bozkus, S., et al. (2022). GFPT2/GFAT2 and AMDHD2 act in tandem to control the hexosamine pathway. Elife, 11. doi:10.7554/eLife.69223.


Cite as: https://hdl.handle.net/21.11116/0000-000B-B723-F
Abstract
The hexosamine biosynthetic pathway (HBP) produces the essential metabolite UDP-GlcNAc and plays a key role in metabolism, health, and aging. The HBP is controlled by its rate-limiting enzyme glutamine fructose-6-phosphate amidotransferase (GFPT/GFAT) that is directly inhibited by UDP-GlcNAc in a feedback loop. HBP regulation by GFPT is well studied but other HBP regulators have remained obscure. Elevated UDP-GlcNAc levels counteract the glycosylation toxin tunicamycin (TM), and thus we screened for TM resistance in haploid mouse embryonic stem cells (mESCs) using random chemical mutagenesis to determine alternative HBP regulation. We identified the N-acetylglucosamine deacetylase AMDHD2 that catalyzes a reverse reaction in the HBP and its loss strongly elevated UDP-GlcNAc. To better understand AMDHD2, we solved the crystal structure and found that loss-of-function (LOF) is caused by protein destabilization or interference with its catalytic activity. Finally, we show that mESCs express AMDHD2 together with GFPT2 instead of the more common paralog GFPT1. Compared with GFPT1, GFPT2 had a much lower sensitivity to UDP-GlcNAc inhibition, explaining how AMDHD2 LOF resulted in HBP activation. This HBP configuration in which AMDHD2 serves to balance GFPT2 activity was also observed in other mESCs and, consistently, the GFPT2:GFPT1 ratio decreased with differentiation of human embryonic stem cells. Taken together, our data reveal a critical function of AMDHD2 in limiting UDP-GlcNAc production in cells that use GFPT2 for metabolite entry into the HBP.