English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The fast-growing business of Serine ADP-ribosylation

MPS-Authors
/persons/resource/persons281203

Longarini,  E. J.
Matic – ADP-ribosylation in DNA Repair and Ageing, Research Groups, Max Planck Institute for Biology of Ageing, Max Planck Society;

/persons/resource/persons78370

Matić,  I.
Matic – ADP-ribosylation in DNA Repair and Ageing, Research Groups, Max Planck Institute for Biology of Ageing, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Longarini, E. J., & Matić, I. (2022). The fast-growing business of Serine ADP-ribosylation. DNA Repair (Amst), 118, 103382. doi:10.1016/j.dnarep.2022.103382.


Cite as: https://hdl.handle.net/21.11116/0000-000B-B6EB-F
Abstract
ADP-ribosylation (ADPr) is a widespread post-translational modification (PTM) spanning all kingdoms of life. It is employed by bacteria and viruses in their war against the host, and by eukaryotes to regulate many physiological processes, across almost all cellular compartments. PARP1, the founding member of the PARP family, is an early sensor of single- and double-strand breaks and catalyzes ADPr to mediate DNA damage repair. The recent discovery of Serine-ADPr and the PARP1 accessory factor HPF1 has brought a momentous change to the field. Bolstered by innovative ways to study ADPr, new and exciting research directions are rapidly emerging. In this review we explore our understanding of the HPF1/PARP1-mediated ADPr signaling pathway in DNA damage. We focus on the mechanistic steps leading to Serine-ADPr and its relevance in the DNA damage response. We discuss important technological advances that have enabled a nuanced study of Serine-ADPr, and conclude with an overview of the role of PARP inhibitors in cancer therapy.