Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Current Approaches for Image Fusion of Histological Data with Computed Tomography and Magnetic Resonance Imaging

MPG-Autoren
/persons/resource/persons221404

Dullin,  Christian
Research Group of Translational Molecular Imaging, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

/persons/resource/persons182068

Alves,  Frauke
Research Group of Translational Molecular Imaging, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

6765895.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Nolte, P., Dullin, C., Svetlove, A., Brettmacher, M., Russmann, C., Schilling, A. F., et al. (2022). Current Approaches for Image Fusion of Histological Data with Computed Tomography and Magnetic Resonance Imaging. Radiology Research and Practice, 2022: 6765895. doi:10.1155/2022/6765895.


Zitierlink: https://hdl.handle.net/21.11116/0000-000C-03D2-3
Zusammenfassung
Classical analysis of biological samples requires the destruction of the tissue’s integrity by cutting or grinding it down to thin slices for (Immuno)-histochemical staining and microscopic analysis. Despite high specificity, encoded in the stained 2D section of the whole tissue, the structural information, especially 3D information, is limited. Computed tomography (CT) or magnetic resonance imaging (MRI) scans performed prior to sectioning in combination with image registration algorithms provide an opportunity to regain access to morphological characteristics as well as to relate histological findings to the 3D structure of the local tissue environment. This review provides a summary of prevalent literature addressing the problem of multimodal coregistration of hard- and soft-tissue in microscopy and tomography. Grouped according to the complexity of the dimensions, including image-to-volume (2D ⟶ 3D), image-to-image (2D ⟶ 2D), and volume-to-volume (3D ⟶ 3D), selected currently applied approaches are investigated by comparing the method accuracy with respect to the limiting resolution of the tomography. Correlation of multimodal imaging could position itself as a useful tool allowing for precise histological diagnostic and allow the a priori planning of tissue extraction like biopsies.