Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Ab initio study of water dissociation on a charged Pd(111) surface

MPG-Autoren
/persons/resource/persons227647

Fidanyan,  K.
Simulations from Ab Initio Approaches, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons21421

Rossi,  M.
Simulations from Ab Initio Approaches, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Fritz Haber Institute of the Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

5.0139082.pdf
(Verlagsversion), 8MB

Ergänzendes Material (frei zugänglich)

supplementary.pdf
(Ergänzendes Material), 184KB

Zitation

Fidanyan, K., Liu, G., & Rossi, M. (2023). Ab initio study of water dissociation on a charged Pd(111) surface. The Journal of Chemical Physics, 158(9): 094707. doi:10.1063/5.0139082.


Zitierlink: https://hdl.handle.net/21.11116/0000-000C-0AF6-4
Zusammenfassung
The interactions between molecules and electrode surfaces play a key role in electrochemical processes and are a subject of extensive research, both experimental and theoretical. In this paper, we address the water dissociation reaction on a Pd(111) electrode surface, modeled as a slab embedded in an external electric field. We aim at unraveling the relationship between surface charge and zero-point energy in aiding or hindering this reaction. We calculate the energy barriers with dispersion-corrected density-functional theory and an efficient parallel implementation of the nudged-elastic-band method. We show that the lowest dissociation barrier and consequently the highest reaction rate take place when the field reaches a strength where two different geometries of the water molecule in the reactant state are equally stable. The zero-point energy contributions to this reaction, on the other hand, remain nearly constant across a wide range of electric field strengths, despite significant changes in the reactant state. Interestingly, we show that the application of electric fields that induce a negative charge on the surface can make nuclear tunneling more significant for these reactions.