English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Bio-Inspired Deaminative Hydroxylation of Aminoheterocycles and Electron-Deficient Anilines

MPS-Authors
/persons/resource/persons268403

Ghiazza,  Clément
Research Group Cornellà, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons284892

Wagner,  Lucas
Research Group Cornellà, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons277170

Fernández,  Sergio
Research Group Cornellà, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons132873

Leutzsch,  Markus
Service Department Farès (NMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons207433

Cornella,  Josep
Research Group Cornellà, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ghiazza, C., Wagner, L., Fernández, S., Leutzsch, M., & Cornella, J. (2023). Bio-Inspired Deaminative Hydroxylation of Aminoheterocycles and Electron-Deficient Anilines. Angewandte Chemie International Edition, 62(2): e202212219. doi:10.1002/anie.202212219.


Cite as: https://hdl.handle.net/21.11116/0000-000C-203C-D
Abstract
Among the tools available to chemists for drug design of bioactive compounds, the bioisosteric replacement of atoms or groups of atoms is the cornerstone of modern strategies. Despite the undeniable interest in amino-to-hydroxyl interchange, enzymatic deaminative hydroxylation remains unmatched. Herein, we report a user friendly and safe procedure to selectively convert aminoheterocycles to their hydroxylated analogues by means of a simple pyrylium tetrafluoroborate salt. The hydroxylation step relies on a Lossen-type rearrangement under mild conditions thus avoiding the use of strong hydroxide bases. In addition to biorelevant heterocycles, the deaminative hydroxylation of electron-deficient anilines was also demonstrated. Finally, mechanistic experiments allowed the identification of the key intermediates, thus unveiling a rather unusual mechanism for this formal aromatic substitution.