Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Force-tuned avidity of spike variant-ACE2 interactions viewed on the single-molecule level

MPG-Autoren
/persons/resource/persons250144

Sikora,  Mateusz       
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;
Faculty of Physics, University of Vienna, Vienna, Austria;
Malopolska Centre of Biotechnology, Gronostajowa, Kraków, Poland;

/persons/resource/persons146403

Mehdipour,  Ahmad Reza       
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;
Center for Molecular Modeling, University of Ghent, Ghent, Belgium;

/persons/resource/persons15259

Hummer,  Gerhard       
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;
Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany;

Externe Ressourcen

Link
(beliebiger Volltext)

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

s41467-023-36905-2.pdf
(beliebiger Volltext), 392KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zhu, R., Canena, D., Sikora, M., Klausberger, M., Seferovic, H., Mehdipour, A. R., et al. (2022). Force-tuned avidity of spike variant-ACE2 interactions viewed on the single-molecule level. Nature Communications, 13(1): 7926. doi:10.1038/s41467-022-35641-3.


Zitierlink: https://hdl.handle.net/21.11116/0000-000C-15F5-8
Zusammenfassung
Recent waves of COVID-19 correlate with the emergence of the Delta and the Omicron variant. We report that the Spike trimer acts as a highly dynamic molecular caliper, thereby forming up to three tight bonds through its RBDs with ACE2 expressed on the cell surface. The Spike of both Delta and Omicron (B.1.1.529) Variant enhance and markedly prolong viral attachment to the host cell receptor ACE2, as opposed to the early Wuhan-1 isolate. Delta Spike shows rapid binding of all three Spike RBDs to three different ACE2 molecules with considerably increased bond lifetime when compared to the reference strain, thereby significantly amplifying avidity. Intriguingly, Omicron (B.1.1.529) Spike displays less multivalent bindings to ACE2 molecules, yet with a ten time longer bond lifetime than Delta. Delta and Omicron (B.1.1.529) Spike variants enhance and prolong viral attachment to the host, which likely not only increases the rate of viral uptake, but also enhances the resistance of the variants against host-cell detachment by shear forces such as airflow, mucus or blood flow. We uncover distinct binding mechanisms and strategies at single-molecule resolution, employed by circulating SARS-CoV-2 variants to enhance infectivity and viral transmission.