English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Functional Water Networks in Fully Hydrated Photosystem II

MPS-Authors
/persons/resource/persons216834

Sirohiwal,  Abhishek
Research Group Pantazis, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons216826

Pantazis,  Dimitrios A.
Research Group Pantazis, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sirohiwal, A., & Pantazis, D. A. (2022). Functional Water Networks in Fully Hydrated Photosystem II. Journal of the American Chemical Society, 144(48), 22035-22050. doi:10.1021/jacs.2c09121.


Cite as: https://hdl.handle.net/21.11116/0000-000C-1BE4-5
Abstract
Water channels and networks within photosystem II (PSII) of oxygenic photosynthesis are critical for enzyme structure and function. They control substrate delivery to the oxygen-evolving center and mediate proton transfer at both the oxidative and reductive endpoints. Current views on PSII hydration are derived from protein crystallography, but structural information may be compromised by sample dehydration and technical limitations. Here, we simulate the physiological hydration structure of a cyanobacterial PSII model following a thorough hydration procedure and large-scale unconstrained all-atom molecular dynamics enabled by massively parallel simulations. We show that crystallographic models of PSII are moderately to severely dehydrated and that this problem is particularly acute for models derived from X-ray free electron laser (XFEL) serial femtosecond crystallography. We present a fully hydrated representation of cyanobacterial PSII and map all water channels, both static and dynamic, associated with the electron donor and acceptor sides. Among them, we describe a series of transient channels and the attendant conformational gating role of protein components. On the acceptor side, we characterize a channel system that is absent from existing crystallographic models but is likely functionally important for the reduction of the terminal electron acceptor plastoquinone QB. The results of the present work build a foundation for properly (re)evaluating crystallographic models and for eliciting new insights into PSII structure and function.