Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Non-Standard Interactions in Radiative Neutrino Mass Models


Jana,  Sudip
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Jana, S. (2022). Non-Standard Interactions in Radiative Neutrino Mass Models. Moscow University physics bulletin, 77: 143, pp. 371-374. doi:10.3103/S0027134922020461.

Cite as: https://hdl.handle.net/21.11116/0000-000C-2122-8
I present a comprehensive analysis of neutrino non-standard interactions (NSI) generated by new scalars in radiative neutrino mass models. To this end, I propose a new nomenclature for classifying radiative neutrino mass models: those containing at least one SM particle in the loop are designated as type-I radiative models, while those without SM particles in the loop are designated as type-II radiative models. In terms of NSI, type-I radiative models are the most intriguing, since the neutrino couples directly to an SM fermion (matter field) and a new scalar, creating NSI at the tree level, in contrast to type-II radiative models. I summarized the maximum possible NSI in all type-I radiative models after accounting for numerous theoretical and experimental restrictions. Additionally, I demonstrate that using light charged scalars in radiative models can result in a Glashow-like resonance feature in the UHE neutrino event spectrum at the IceCube neutrino observatory and its high-energy upgrade IceCube-Gen2, which can probe a sizable fraction of the allowed NSI parameter space. This talk is based on results obtained with K.S. Babu, Bhupal Dev, Anil Thapa and Yicong Sui and presented in hep-ph 1907.09498 and 1908.02779.