English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Discretization of sea ice dynamics in the tangent plane to the sphere by a CD-grid-type finite element

MPS-Authors
/persons/resource/persons220055

Gutjahr,  Oliver
Director’s Research Group OES, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

JAMES_2022-Mehlmann.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Mehlmann, C., & Gutjahr, O. (2022). Discretization of sea ice dynamics in the tangent plane to the sphere by a CD-grid-type finite element. Journal of Advances in Modeling Earth Systems, 14: e2022MS003010. doi:10.1029/2022MS003010.


Cite as: https://hdl.handle.net/21.11116/0000-000C-3528-C
Abstract
We present a new discretization of sea ice dynamics on the sphere. The approach describes sea ice motion in tangent planes to the sphere. On each triangle of the mesh, the ice dynamics are discretized in a local coordinate system using a CD-grid-like non-conforming finite element method. The development allows a straightforward coupling to the C-grid like ocean model in Icosahedral Non-hydrostatic-Ocean model, which uses the same infrastructure as the sea ice module. Using a series of test examples, we demonstrate that the non-conforming finite element discretization provides a stable realization of large-scale sea ice dynamics on the sphere. A comparison with observation shows that we can simulate typical drift patterns with the new numerical realization of the sea ice dynamics. © 2022 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union.