Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Stabilizing efficient structures of superwetting electrocatalysts for enhanced urea oxidation reactions

MPG-Autoren
/persons/resource/persons285290

Kang,  Liqun
Research Department DeBeer, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zhang, J., Song, X., Kang, L., Zhu, J., Liu, L., Zhang, Q., et al. (2022). Stabilizing efficient structures of superwetting electrocatalysts for enhanced urea oxidation reactions. Chem Catalysis, 2(11), 3254-3270. doi:10.1016/j.checat.2022.09.023.


Zitierlink: https://hdl.handle.net/21.11116/0000-000C-9CEB-C
Zusammenfassung
Layered hydroxides have shown superior catalytic activity for the electrocatalytic organic compound oxidation reaction. However, metal leaching can lead to uncontrollable structural phase transformation. Here, we report a Cr-Ni(OH)(2) electrocatalyst as a model of a pre-catalyst for the identification of the structure-performance relationship. The optimized electrocatalyst delivered superb performances, i.e., a low potential of 1.38 V (versus reversible hydrogen electrode [RHE]) to reach 100 mA cm(-2) and stable activity over 200 h at 10 mA cm(-2). In situ analyses and theoretical calculations demonstrate that well-tuned electronic structures and the superhydrophilic-superaerophobic surface can enable rapid urea oxidation reaction (UOR) kinetics, which reduces the specific adsorption OH- and significantly depresses Cr dopants leaching, and this helps to maintain high UOR performance. Furthermore, the crucial role of mass transfer improvement to alleviate the structural decay under high potentials is disclosed.