English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Observation of a robust and active catalyst for hydrogen evolution under high current densities

MPS-Authors
/persons/resource/persons227532

Arpino,  Kathryn E.
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons230811

Yang,  Qun
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons285718

Kikugawa,  Naoki
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons195519

Sokolov,  Dmitry A.
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126653

Hicks,  Clifford W.
Clifford Hicks, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  Claudia
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Zhang, Y., Arpino, K. E., Yang, Q., Kikugawa, N., Sokolov, D. A., Hicks, C. W., et al. (2022). Observation of a robust and active catalyst for hydrogen evolution under high current densities. Nature Communications, 13: 7784, pp. 1-11. doi:10.1038/s41467-022-35464-2.


Cite as: https://hdl.handle.net/21.11116/0000-000C-73A6-7
Abstract
Despite the fruitful achievements in the development of hydrogen production catalysts with record-breaking performances, there is still a lack of durable catalysts that could work under large current densities (>1000 mA cm−2). Here, we investigated the catalytic behaviors of Sr2RuO4 bulk single crystals. This crystal has demonstrated remarkable activities under the current density of 1000 mA cm−2, which require overpotentials of 182 and 278 mV in 0.5 M H2SO4 and 1 M KOH electrolytes, respectively. These materials are stable for 56 days of continuous testing at a high current density of above 1000 mA cm−2 and then under operating temperatures of 70 °C. The in-situ formation of ferromagnetic Ru clusters at the crystal surface is observed, endowing the single-crystal catalyst with low charge transfer resistance and high wettability for rapid gas bubble removal. These experiments exemplify the potential of designing HER catalysts that work under industrial-scale current density. © 2022, The Author(s).