English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Au4Mn: A localized ferromagnet with strong spin-orbit coupling, long-range ferromagnetic exchange, and high Curie temperature

MPS-Authors
/persons/resource/persons265643

Kang,  Yu
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  Claudia
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

He, Y., Gercsi, Z., Zhang, R., Kang, Y., Skourski, Y., Prendeville, L., et al. (2022). Au4Mn: A localized ferromagnet with strong spin-orbit coupling, long-range ferromagnetic exchange, and high Curie temperature. Physical Review B, 106(21): 214414, pp. 1-8. doi:10.1103/PhysRevB.106.214414.


Cite as: https://hdl.handle.net/21.11116/0000-000C-76CC-A
Abstract
Metallic Mn-based alloys with a nearest-neighbor Mn-Mn distance greater than 0.4 nm exhibit large, well-localized magnetic moments. Here we investigate the magnetism of tetragonal Au4Mn with a Curie temperature of 385 K, where manganese has a spin moment of 4.1μB and its orbital moment is quenched. Since 80% of the atoms are gold, the spin-orbit interaction is strong and Au4Mn exhibits uniaxial magnetocrystalline anisotropy with surface maze domains at room temperature. The magnetic hardness parameter of 1.0 is sufficient to maintain the magnetization along the c axis for a sample of any shape. Au also reduces the spin moment of Mn through 5d-3d orbital hybridization. An induced moment of 0.05μB was found on Au under a pulsed field of 40 T. Density functional theory calculations indicate that the Mn-Mn exchange is mediated by spin-polarized gold 5d and 6p electrons. The distance dependence shows that it is ferromagnetic or zero for the first ten shells of Mn neighbors out to 1.041 nm (64 atoms), and very weak and oscillatory thereafter. © 2022 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Open access publication funded by the Max Planck Society.