Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Boosting ethanol oxidation by NiOOH-CuO nano-heterostructure for energy-saving hydrogen production and biomass upgrading

MPG-Autoren
/persons/resource/persons126666

Hu,  Zhiwei
Zhiwei Hu, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sun, H., Li, L., Chen, Y., Kim, H., Xu, X., Guan, D., et al. (2023). Boosting ethanol oxidation by NiOOH-CuO nano-heterostructure for energy-saving hydrogen production and biomass upgrading. Applied Catalysis B: Environmental, 325: 122388, pp. 1-10. doi:10.1016/j.apcatb.2023.122388.


Zitierlink: https://hdl.handle.net/21.11116/0000-000C-7B01-9
Zusammenfassung
Substituting the anodic oxygen evolution reaction in water electrolysis with a thermodynamically more favorable ethanol oxidation reaction (EOR) provides a promising route for simultaneous biomass upgrading and energy-saving hydrogen production. Herein, we synthesize a NiOOH-CuO nano-heterostructure anchored on a three-dimensional conductive Cu foam, which exhibits remarkable EOR performance, surpassing all the state-of-the-art 3d transition-metal-based EOR electrocatalysts. Density functional theory reveals that the coupling between CuO and NiOOH by charge redistribution at the interface is critical, synergistically reducing the EOR energy barriers into an energetically favorable pathway. Conclusively, the hybrid water electrolysis cell using our catalyst as the anode (1) requires only a low cell voltage for H2 generation at the cathode and only liquid chemical production of acetate at the anode, and (2) shows a high ethanol conversion rate to acetate, which can readily be separated from the aqueous electrolyte by subsequent acidification and extraction processes. © 2023