English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

microRNAs and the evolution of complex multicellularity: identification of a large, diverse complement of microRNAs in the brown alga Ectocarpus

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Tarver, J., Cormier, A., Pinzón, N., Taylor, R., Carré, W., Strittmatter, M., et al. (2015). microRNAs and the evolution of complex multicellularity: identification of a large, diverse complement of microRNAs in the brown alga Ectocarpus. Nucleic Acids Research (London), 43(13), 6384-6398. doi:10.1093/nar/gkv578.


Cite as: https://hdl.handle.net/21.11116/0000-000C-7C1B-C
Abstract
There is currently convincing evidence that microRNAs have evolved independently in at least six different eukaryotic lineages: animals, land plants, chlorophyte green algae, demosponges, slime molds and brown algae. MicroRNAs from different lineages are not homologous but some structural features are strongly conserved across the eukaryotic tree allowing the application of stringent criteria to identify novel microRNA loci. A large set of 63 microRNA families was identified in the brown alga Ectocarpus based on mapping of RNA-seq data and nine microRNAs were confirmed by northern blotting. The Ectocarpus microRNAs are highly diverse at the sequence level with few multi-gene families, and do not tend to occur in clusters but exhibit some highly conserved structural features such as the presence of a uracil at the first residue. No homologues of Ectocarpus microRNAs were found in other stramenopile genomes indicating that they emerged late in stramenopile evolution and are perhaps specific to the brown algae. The large number of microRNA loci in Ectocarpus is consistent with the developmental complexity of many brown algal species and supports a proposed link between the emergence and expansion of microRNA regulatory systems and the evolution of complex multicellularity.