Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Non-cell autonomous regulation of life cycle transitions in the model brown alga Ectocarpus

There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Arun, A., Peters, N., Scornet, D., Peters, A., Cock, J., & Coelho, S. (2013). Non-cell autonomous regulation of life cycle transitions in the model brown alga Ectocarpus. New Phytologist, 197(2), 503-510. doi:10.1111/nph.12007.

Cite as: https://hdl.handle.net/21.11116/0000-000C-7C37-C
The model brown alga Ectocarpus has a haploid-diploid life cycle, involving alternation between two independent multicellular generations, the gametophyte and the sporophyte. Recent work has shown that alternation of generations is not determined by ploidy but is rather under genetic control, involving at least one master regulatory locus, OUROBOROS (ORO). Using cell biology approaches combined with measurements of generation-specific transcript abundance we provide evidence that alternation of generations can also be regulated by non-cell autonomous mechanisms. The Ectocarpus sporophyte produces a diffusible factor that causes major developmental reprogramming in gametophyte cells. Cells become resistant to reprogramming when the cell wall is synthetized, suggesting that the cell wall may play a role in locking an individual into the developmental program that has been engaged. A functional ORO gene is necessary for the induction of the developmental switch. Our results highlight the role of the cell wall in maintaining the differentiated generation stage once the appropriate developmental program has been engaged and also indicate that ORO is a key member of the developmental pathway triggered by the sporophyte factor. Alternation between gametophyte and sporophyte generations in Ectocarpus is surprisingly labile, perhaps reflecting an adaptation to the variable seashore environment inhabited by this alga.