English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Detecting clusters of galaxies and active galactic nuclei in an eROSITA all-sky survey digital twin

MPS-Authors
/persons/resource/persons284367

Seppi,  R.
High Energy Astrophysics, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons208300

Comparat,  J.
High Energy Astrophysics, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons250304

Bulbul,  E.
High Energy Astrophysics, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons4879

Nandra,  K.
High Energy Astrophysics, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons4724

Merloni,  A.
High Energy Astrophysics, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons227224

Liu,  T.
High Energy Astrophysics, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons247129

Ghirardini,  V.
High Energy Astrophysics, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons284361

Liu,  A.
High Energy Astrophysics, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons24380

Salvato,  M.
High Energy Astrophysics, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons98842

Sanders,  J. S.
High Energy Astrophysics, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons73398

Dwelly,  T.
High Energy Astrophysics, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons247131

Ramos-Ceja,  M. E.
High Energy Astrophysics, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons285974

Garrel,  C.
High Energy Astrophysics, MPI for Extraterrestrial Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Seppi, R., Comparat, J., Bulbul, E., Nandra, K., Merloni, A., Clerc, N., et al. (2022). Detecting clusters of galaxies and active galactic nuclei in an eROSITA all-sky survey digital twin. Astronomy and Astrophysics, 665: A78. doi:10.1051/0004-6361/202243824.


Cite as: https://hdl.handle.net/21.11116/0000-000C-7FA1-0
Abstract
Context. The extended ROentgen Survey with an Imaging Telescope Array (eROSITA) on board the Spectrum-Roentgen-Gamma (SRG) observatory is revolutionizing X-ray astronomy. The mission provides unprecedented samples of active galactic nuclei (AGN) and clusters of galaxies, with the potential of studying astrophysical properties of X-ray sources and measuring cosmological parameters using X-ray-selected samples with higher precision than ever before.
Aims. We aim to study the detection, and the selection of AGN and clusters of galaxies in the first eROSITA all-sky survey, and to characterize the properties of the source catalog.
Methods. We produced a half-sky simulation at the depth of the first eROSITA survey (eRASS1), by combining models that truthfully represent the population of clusters and AGN. In total, we simulated 1 116 758 clusters and 225 583 320 AGN. We ran the standard eROSITA detection algorithm, optimized for extragalactic sources. We matched the input and the source catalogs with a photon-based matching algorithm.
Results. We perfectly recovered the bright AGN and clusters. We detected half of the simulated AGN with flux larger than 2 × 10−14 erg s−1 cm−2 as point sources and half of the simulated clusters with flux larger than 3 × 10−13 erg s−1 cm−2 as extended sources in the 0.5–2.0 keV band. We quantified the detection performance in terms of completeness, false detection rate, and contamination. We studied the population in the source catalog according to multiple cuts of source detection and extension likelihood. We find that the latter is suitable for removing contamination, and the former is very efficient in minimizing the false detection rate. We find that the detection of clusters of galaxies is mainly driven by flux and exposure time. It additionally depends on secondary effects, such as the size of the clusters on the sky plane and their dynamical state. The cool core bias mostly affects faint clusters classified as point sources, while its impact on the extent-selected sample is small. We measured the fraction of the area covered by our simulation as a function of limiting flux. We measured the X-ray luminosity of the detected clusters and find that it is compatible with the simulated values.
Conclusions. We discuss how to best build samples of galaxy clusters for cosmological purposes, accounting for the nonuniform depth of eROSITA. This simulation provides a digital twin of the real eRASS1.