English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

KiDS and Euclid: Cosmological implications of a pseudo angular power spectrum analysis of KiDS-1000 cosmic shear tomography

MPS-Authors
/persons/resource/persons128614

Bodendorf,  C.
Optical and Interpretative Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons23147

Grupp,  F.
Optical and Interpretative Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons202823

Raison,  F.
Optical and Interpretative Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons18398

Saglia,  R.
Optical and Interpretative Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons25949

Weller,  J.
Optical and Interpretative Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Loureiro, A., Whittaker, L., Mancini, A. S., Joachimi, B., Cuceu, A., Asgari, M., et al. (2022). KiDS and Euclid: Cosmological implications of a pseudo angular power spectrum analysis of KiDS-1000 cosmic shear tomography. Astronomy and Astrophysics, 665: A56. doi:10.1051/0004-6361/202142481.


Cite as: https://hdl.handle.net/21.11116/0000-000C-8053-5
Abstract
GRAVITY+ is the upgrade for GRAVITY and the Very Large Telescope Interferometer (VLTI) with wide-separation fringe tracking, new adaptive optics, and laser guide stars on all four 8 m Unit Telescopes (UTs) to enable ever-fainter, all-sky, high-contrast, milliarcsecond interferometry. Here we present the design and first results of the first phase of GRAVITY+, known as GRAVITY Wide. GRAVITY Wide combines the dual-beam capabilities of the VLTI and the GRAVITY instrument to increase the maximum separation between the science target and the reference star from 2 arcseconds with the 8 m UTs up to several 10 arcseconds, limited only by the Earth’s turbulent atmosphere. This increases the sky-coverage of GRAVITY by two orders of magnitude, opening up milliarcsecond resolution observations of faint objects and, in particular, the extragalactic sky. The first observations in 2019–2022 include the first infrared interferometry of two redshift z ~ 2 quasars, interferometric imaging of the binary system HD 105913A, and repeat observations of multiple star systems in the Orion Trapezium Cluster. We find the coherence loss between the science object and fringe-tracking reference star well described by the turbulence of the Earth’s atmosphere. We confirm that the larger apertures of the UTs result in higher visibilities for a given separation due to the broader overlap of the projected pupils on the sky and provide predictions for visibility loss as a function of separation to be used for future planning.