Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Modelling the Large and Dynamically Growing Bipartite Network of German Patents and Inventors

MPG-Autoren
/persons/resource/persons130171

Harhoff,  Dietmar
MPI for Innovation and Competition, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Fritz, C., De Nicola, G., Kevork, S., Harhoff, D., & Kauermann, G. (2023). Modelling the Large and Dynamically Growing Bipartite Network of German Patents and Inventors. Journal of the Royal Statistical Society, Series A: Statistics in Society, 186(3), 557-576. doi:10.1093/jrsssa/qnad009.


Zitierlink: https://hdl.handle.net/21.11116/0000-000C-826D-7
Zusammenfassung
To explore the driving forces behind innovation, we analyse the dynamic bipartite network of all inventors and patents registered within the field of electrical engineering in Germany in the past two decades. To deal with the sheer size of the data, we decompose the network by exploiting the fact that most inventors tend to only stay active for a relatively short period. We thus propose a Temporal Exponential Random Graph Model with time-varying actor set and sufficient statistics mirroring substantial expectations for our analysis. Our results corroborate that inventor characteristics and team formation are essential to the dynamics of invention.