English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Neuron-oligodendrocyte potassium shuttling at nodes of Ranvier protects against inflammatory demyelination

MPS-Authors
/persons/resource/persons182306

Möbius,  Wiebke
Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

/persons/resource/persons182320

Nave,  Klaus-Armin
Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Supplementary Material (public)
There is no public supplementary material available
Citation

Kapell, H., Fazio, L., Dyckow, J., Schwarz, S., Cruz-Herranz, A., Mayer, C., et al. (2023). Neuron-oligodendrocyte potassium shuttling at nodes of Ranvier protects against inflammatory demyelination. The Journal of Clinical Investigation, 133(7): e164223. doi:10.1172/JCI164223.


Cite as: https://hdl.handle.net/21.11116/0000-000C-8446-0
Abstract
Multiple sclerosis (MS) is a progressive inflammatory-demyelinating disease of the central nervous system. Increasing evidence suggests that vulnerable neurons in MS exhibit fatal metabolic exhaustion over time, a phenomenon hypothesized to be caused by chronic hyperexcitability. Axonal Kv7 (outward rectifying) and oligodendroglial Kir4.1 (inward rectifying) potassium channels have important roles in regulating neuronal excitability at and around nodes of Ranvier. Here, we studied the spatial and functional relationship between neuronal Kv7 and oligodendroglial Kir4.1 channels and assessed the transcriptional and functional signatures of cortical and retinal projection neurons under physiological and inflammatory-demyelinating conditions. We found that both channels became dysregulated in MS and experimental autoimmune encephalomyelitis (EAE) with Kir4.1 channels being chronically downregulated and Kv7 channel subunits being transiently upregulated during inflammatory demyelination. Further, we observed that pharmacological Kv7 channel opening with retigabine reduced neuronal hyperexcitability in human and EAE neurons, improved clinical EAE signs and rescued neuronal pathology in oligodendrocyte-Kir4.1-deficient mice. In summary, our findings indicate that neuron-oligodendrocyte compensatory interactions promote resilience through Kv7 and Kir4.1 channels and suggest pharmacological activation of nodal Kv7 channels as a neuroprotective strategy against inflammatory demyelination.