English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Confined environments induce polarized paraspeckle condensates

MPS-Authors
/persons/resource/persons286261

Meid,  Annika
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

/persons/resource/persons76135

Spatz,  Joachim P.
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Todorovski, V., McCluggage, F., Li, Y., Meid, A., Spatz, J. P., Holle, A. W., et al. (2023). Confined environments induce polarized paraspeckle condensates. Communications Biology, 6: 145, pp. 1-6. doi:10.1038/s42003-023-04528-4.


Cite as: https://hdl.handle.net/21.11116/0000-000C-8A6A-2
Abstract
Cancer cells experience confinement as they navigate the tumour microenvironment during metastasis. Recent studies have revealed that the nucleus can function as a 'ruler' for measuring physical confinement via membrane tension, allowing for compression-sensitive changes in migration. Cell nuclei contain many nuclear bodies that form when their components phase separate and condense within permissive local regions within the nucleus. However, how sub-nuclear organisation and phase separation changes with cell confinement and compression is largely unknown. Here we focus on paraspeckles, stress-responsive subnuclear bodies that form by phase separation around the long non-coding RNA NEAT1. As cells entered moderate confinement, a significant increase in paraspeckle number and size was observed compared to unconfined cells. Paraspeckle polarization bias towards the leading edge was also observed in confinement, correlating with regions of euchromatin. Increasing paraspeckle abundance resulted in increases in confined migration likelihood, speed, and directionality, as well as an enhancement of paraspeckle polarization towards the leading edge. This polarization of paraspeckle condensates may play a key role in regulating confined migration and invasion in cancer cells, and illustrates the utility of microchannel-based assays for identifying phenomena not observed on 2D or 3D bulk substrates.