English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Asymmetric counteranion-directed photoredox catalysis

MPS-Authors
/persons/resource/persons201861

Das,  Sayantani
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons257605

Zhu,  Chendan
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons274192

Demirbas,  Derya
Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons132969

De,  Chandra Kanta
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58764

List,  Benjamin
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Supplementary Material (public)
There is no public supplementary material available
Citation

Das, S., Zhu, C., Demirbas, D., Bill, E., De, C. K., & List, B. (2023). Asymmetric counteranion-directed photoredox catalysis. Science, 379(6631), 494-499. doi:10.1126/science.ade8190.


Cite as: https://hdl.handle.net/21.11116/0000-000C-92C5-0
Abstract
Photoredox catalysis enables distinctive and broadly applicable chemical reactions, but controlling their selectivity has proven to be difficult. The pursuit of enantioselectivity is a particularly daunting challenge, arguably because of the high energy of the activated radical (ion) intermediates, and previous approaches have invariably required pairing of the photoredox catalytic cycle with an additional activation mode for asymmetric induction. A potential solution for photoredox reactions proceeding via radical ions would be catalytic pairing with enantiopure counterions. However, although attempts toward this approach have been described, high selectivity has not yet been accomplished. Here we report a potentially general solution to radical cation–based asymmetric photoredox catalysis. We describe organic salts, featuring confined imidodiphosphorimidate counteranions that catalyze highly enantioselective [2+2]-cross cycloadditions of styrenes.