English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Spring land temperature in Tibetan Plateau and global-scale summer precipitation: Initialization and improved prediction

MPS-Authors
/persons/resource/persons37206

Klocke,  Daniel       
Computational Infrastructure and Model Development (CIMD), Scientific Computing Lab (ScLab), MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

1520-0477-BAMS-D-21-0270.1.pdf
(Publisher version), 15MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Xue, Y., Diallo, I., Boone, A. A., Yao, T., Zhang, Y., Zeng, X., et al. (2022). Spring land temperature in Tibetan Plateau and global-scale summer precipitation: Initialization and improved prediction. Bulletin of the American Meteorological Society, 103, E2756-E2767. doi:10.1175/BAMS-D-21-0270.1.


Cite as: https://hdl.handle.net/21.11116/0000-000C-9113-A
Abstract
Subseasonal-to-seasonal (S2S) precipitation prediction in boreal spring and summer months, which contains a significant number of high-signal events, is scientifically challenging and prediction skill has remained poor for years. Tibetan Plateau (TP) spring observed surface ­temperatures show a lag correlation with summer precipitation in several remote regions, but current global land–atmosphere coupled models are unable to represent this behavior due to significant errors in producing observed TP surface temperatures. To address these issues, the Global Energy and Water Exchanges (GEWEX) program launched the “Impact of Initialized Land Temperature and Snowpack on Subseasonal-to-Seasonal Prediction” (LS4P) initiative as a community effort to test the impact of land temperature in high-mountain regions on S2S prediction by climate models: more than 40 institutions worldwide are participating in this project. After using an innovative new land state initialization approach based on observed surface 2-m temperature over the TP in the LS4P experiment, results from a multimodel ensemble provide evidence for a causal relationship in the observed association between the Plateau spring land temperature and summer precipitation over several regions across the world through teleconnections. The influence is underscored by an out-of-phase oscillation between the TP and Rocky Mountain surface temperatures. This study reveals for the first time that high-mountain land temperature could be a substantial source of S2S precipitation predictability, and its effect is probably as large as ocean surface temperature over global “hotspot” regions identified here; the ensemble means in some “hotspots” produce more than 40% of the observed anomalies. This LS4P approach should stimulate more follow-on explorations