Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Elastic interactions of active cells with soft materials


Bischofs,  IB       
Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Bischofs, I., Safran, S., & Schwarz, U. (2004). Elastic interactions of active cells with soft materials. PHYSICAL REVIEW E, 69(2): 021911. doi:10.1103/PhysRevE.69.021911.

Cite as: https://hdl.handle.net/21.11116/0000-000C-91DA-A
Anchorage-dependent cells collect information on the mechanical properties of the environment through their contractile machineries and use this information to position and orient themselves. Since the probing process is anisotropic, cellular force patterns during active mechanosensing can be modeled as anisotropic force contraction dipoles. Their buildup depends on the mechanical properties of the environment, including elastic rigidity and prestrain. In a finite sized sample, it also depends on sample geometry and boundary conditions through image strain fields. We discuss the interactions of active cells with an elastic environment and compare it to the case of physical force dipoles. Despite marked differences, both cases can be described in the same theoretical framework. We exactly solve the elastic equations for anisotropic force contraction dipoles in different geometries (full space, half space, and sphere) and with different boundary conditions. These results are then used to predict optimal position and orientation of mechanosensing cells in soft material.