Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Surface magnetism of rapidly rotating red giants: Single versus close binary stars

MPG-Autoren
/persons/resource/persons283885

Gehan,  C.
Department Solar and Stellar Interiors, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons238939

Gaulme,  Patrick
Department Solar and Stellar Interiors, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons260077

Yu,  Jie
Department Solar and Stellar Interiors, Max Planck Institute for Solar System Research, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gehan, C., Gaulme, P., & Yu, J. (2022). Surface magnetism of rapidly rotating red giants: Single versus close binary stars. Astronomy and Astrophysics, 668, A116. doi:10.1051/0004-6361/202245083.


Zitierlink: https://hdl.handle.net/21.11116/0000-000C-97D6-8
Zusammenfassung
According to dynamo theory, stars with convective envelopes efficiently generate surface magnetic fields, which manifest as magnetic activity in the form of starspots, faculae, and/or flares, when their rotation period is shorter than their convective turnover time. Most red giants, having undergone significant spin down while expanding, have slow rotation and no spots. However, based on a sample of about 4500 red giants observed by the NASA Kepler mission, a previous study showed that about 8% of them display spots, about 15% of which belong to close binary systems. Here, we shed light on a puzzling fact: for rotation periods less than 80 days, a red giant that belongs to a close binary system displays a photometric modulation about an order of magnitude larger than that of a single red giant with a similar rotational period and similar physical properties. We investigate whether binarity leads to larger magnetic fields when tides lock systems, or if a different spot distribution on single versus close binary stars can explain this fact. For this, we measured the chromospheric emission in the Ca II H & K lines of 3130 of the 4465 stars studied in a previous work thanks to the LAMOST survey. We show that red giants in a close-binary configuration with spin-orbit resonance display significantly larger chromospheric emission than single stars, suggesting that tidal locking leads to larger magnetic fields at a fixed rotational period. Beyond bringing interesting new observables to study the evolution of binary systems, this result could be used to distinguish single versus binary red giants in automatic pipelines based on machine learning. <P />Full Table 1 is only available at the CDS via anonymous ftp to <A href="http://cdsarc.cds.unistra.fr">cdsarc.cds.unistra.fr</A> (ftp://130.79.128.5) or via <A href="https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/668/A116">https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/668/A116</A>