日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

 前へ次へ 

公開

学術論文

Population study of astrophysical false positive detections in the southern plato field

MPS-Authors
/persons/resource/persons268678

Farmer,  Robert
Stellar Astrophysics, MPI for Astrophysics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Bray, J. C., Kolb, U., Rowden, P., Farmer, R., Börner, A., & Kozhura, O. (2022). Population study of astrophysical false positive detections in the southern plato field. Monthly Notices of the Royal Astronomical Society, 518(3), 3637-3652. doi:10.1093/mnras/stac3262.


引用: https://hdl.handle.net/21.11116/0000-000C-96F6-5
要旨
For the upcoming PLAnetary Transits and Oscillation of stars (PLATO) satellite mission, a large number of target stars are required to yield a statistically significant number of planet transits. Locating the centres of the long duration observational phase (LOP) fields closer to the Galactic plane will increase the target star numbers but also the astrophysical false positives (FPs) from blended eclipsing binary systems. We utilize the Binary Stellar Evolution and Population Synthesis code, to create a complete synthetic stellar and planetary population for the proposed southern LOP field (LOPS0), as well as for a representative portion of the northern LOP field (LOPN-sub). For LOPS0, we find an overall low FP rate for planets smaller than Neptunes. The FP rate generally shows little variation with Galactic longitude (l), and a modest increase with decreasing Galactic latitude (|b|). The location of the LOPS field centre within the current allowed region is not strongly constrained by FPs. Analysis of LOPN-sub suggests a markedly increased number of FPs across the full range of planet radii at low |b| resulting in approximately twice the percentage of FP detection rate in the LOPN-sub compared to the corresponding southern field segment in the planet radius range −0.2 < log (R/R) ≤ 0.4. However, only a few per cent of fully eclipsing FPs in LOPS0 in this radius range have periods between 180 and 1000 d so the vast majority of FPs are expected to be outside the period range of interest for PLATO.