Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Preprint

Signatures of criticality in efficient coding networks

MPG-Autoren
/persons/resource/persons192723

Safavi,  S       
Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84063

Logothetis,  N       
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons173580

Levina,  A       
Institutional Guests, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Safavi, S., Chalk, M., Logothetis, N., & Levina, A. (submitted). Signatures of criticality in efficient coding networks.


Zitierlink: https://hdl.handle.net/21.11116/0000-000C-9E34-8
Zusammenfassung
The critical brain hypothesis states that the brain can benefit from operating close to a second-order phase transition. While it has been shown that several computational aspects of sensory information processing (e. g., sensitivity to input) are optimal in this regime, it is still unclear whether these computational benefits of criticality can be leveraged by neural systems performing behaviorally relevant computations. To address this question, we investigate signatures of criticality in networks optimized to perform efficient encoding of stimuli. We consider a spike-coding network of leaky integrate-and-fire neurons with synaptic transmission delays and input noise. Previously, it was shown that the performance of such networks varies non-monotonically with the noise amplitude. Interestingly, we find that in the vicinity of the optimal noise level for efficient coding, the network dynamics exhibits signatures of criticality, namely, the distribution of avalanche sizes follows a power law. When the noise amplitude is too low or too high for efficient coding, the network appears either super-critical or sub-critical, respectively. Our work suggests that two influential, and previously disparate theories of neural processing optimization – efficient coding, and criticality – may be intimately related.