English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Optimal Bond Constraint Topology for Molecular Dynamics Simulations of Cholesterol

MPS-Authors
/persons/resource/persons276433

Fábián,  Balázs       
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons15259

Hummer,  Gerhard       
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;
Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Supplementary Material (public)
There is no public supplementary material available
Citation

Fábián, B., Thallmair, S., & Hummer, G. (2023). Optimal Bond Constraint Topology for Molecular Dynamics Simulations of Cholesterol. Journal of Chemical Theory and Computation, 19(5), 1592-1601. doi:10.1021/acs.jctc.2c01032.


Cite as: https://hdl.handle.net/21.11116/0000-000C-9E47-3
Abstract
We recently observed artificial temperature gradients in molecular dynamics (MD) simulations of phase-separating ternary lipid mixtures using the Martini 2 force field. We traced this artifact to insufficiently converged bond length constraints with typical time steps and default settings for the linear constraint solver (LINCS). Here, we systematically optimize the constraint scaffold of cholesterol. With massive virtual sites in an equimomental arrangement, we accelerate bond constraint convergence while preserving the original cholesterol force field and dynamics. The optimized model does not induce nonphysical temperature gradients even at relaxed LINCS settings and is at least as fast as the original model at the strict LINCS settings required for proper thermal sampling. We provide a python script to diagnose possible problems with constraint convergence for other molecules and force fields. Equimomental constraint topology optimization can also be used to boost constraint convergence in atomistic MD simulations of molecular systems.