English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Arcus - Exploring the formation and evolution of clusters, galaxies and stars

MPS-Authors
/persons/resource/persons250304

Bulbul,  Esra
High Energy Astrophysics, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons4784

Burwitz,  Vadim
High Energy Astrophysics, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons4879

Nandra,  Kirpal
High Energy Astrophysics, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons98842

Sanders,  Jeremy
High Energy Astrophysics, MPI for Extraterrestrial Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Smith, R. K., Bautz, M., Bregman, J., Brenneman, L., Brickhouse, N., Bulbul, E., et al. (2022). Arcus - Exploring the formation and evolution of clusters, galaxies and stars. In Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray. doi:10.1117/12.2628628.


Cite as: https://hdl.handle.net/21.11116/0000-000C-9F27-6
Abstract
Supermassive black holes (SMBH) interact with gas in the interstellar and intergalactic media (ISM/IGM) in a process termed “feedback” that is key to the formation and evolution of galaxies and clusters. Characterizing the origins and physical mechanisms governing this feedback requires tracing the propagation of outflowing mass, energy and momentum from the vicinity of the SMBH out to megaparsec scales. Our ability to understand the interplay between feedback and structure evolution across multiple scales, as well as a wide range of other important astrophysical phenomena, depends on diagnostics only available in soft x-ray spectra (10-50 Å). Arcus combines high-resolution, efficient, lightweight x-ray gratings with silicon pore optics to provide R~2500 with an average effective area of ~200 cm2, an order of magnitude larger than the Chandra gratings. Flight-proven CCDs and instrument electronics are strong heritage components, while spacecraft and mission operations also reuse highly successful designs.