Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Distribution and dynamics of decimetre-sized dust agglomerates in the coma of 67P/Churyumov–Gerasimenko

MPG-Autoren
/persons/resource/persons266296

Lemos,  Jorge Pablo
Planetary Science Department, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons123097

Agarwal,  Jessica
Planetary Science Department, Max Planck Institute for Solar System Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lemos, J. P., Agarwal, J., & Schröter, M. (2023). Distribution and dynamics of decimetre-sized dust agglomerates in the coma of 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 519, 5775-5786. doi:10.1093/mnras/stad032.


Zitierlink: https://hdl.handle.net/21.11116/0000-000C-AB42-9
Zusammenfassung
We present a method to analyse images of the coma of 67P/Churyumov–Gerasimenko obtained using OSIRIS, the main imaging system on-board Rosetta, where dust aggregates can be seen as bright tracks because of their relative velocity with respect to the spacecraft. We applied this method to 105 images taken in 2015 July, 2015 December, and 2016 January, identifying more than 20 000 individual objects. We performed a photometric analysis of them, finding their phase function. This phase function follows the same trend as the one found for the nucleus, consistent with the detected particles having a size larger than ∼1 mm. Additionally, the phase function becomes shallower for increasing heliocentric distances, indicating a decrease in the mean agglomerate size. In order to characterize the agglomerates observed in the image, we developed a simplified model for their ejection and dynamics in the coma, and generated synthetic images based on it. We solved the inverse problem by finding the simulation parameters that give the best fit between synthetic and real images. In doing so, we were able to obtain a mean agglomerate size ∼ dm and initial speed ≃ 1 m s−1. Both show a decrease with increasing heliocentric distance, sign of the reduction in activity. Also, the sizes obtained by the comparison are not compatible with ejection caused by water activity, so other sources have to be invoked, mainly CO2.