English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Search for heavy particles in the $b$-tagged dijet mass distribution with additional $b$-tagged jets in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment

MPS-Authors

ATLAS Collaboration, 
Max Planck Institute for Physics, Max Planck Society and Cooperation Partners;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

ATLAS Collaboration (2022). Search for heavy particles in the $b$-tagged dijet mass distribution with additional $b$-tagged jets in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment. Physical Review D, 105, 012001. Retrieved from https://publications.mppmu.mpg.de/?action=search&mpi=MPP-2021-152.


Cite as: https://hdl.handle.net/21.11116/0000-000C-B4D7-6
Abstract
A search optimized for new heavy particles decaying to two $b$-quarks and produced in association with additional $b$-quarks is reported. The sensitivity is improved by $b$-tagging at least one lower-$p_\text{T}$ jet in addition to the two highest-$p_\text{T}$ jets. The data used in this search correspond to an integrated luminosity of 103 $\text{fb}^{-1}$ collected with a dedicated trijet trigger during the 2017 and 2018 $\sqrt{s} = 13$ TeV proton$-$proton collision runs with the ATLAS detector at the LHC. The search looks for resonant peaks in the $b$-tagged dijet invariant mass spectrum over a smoothly falling background. The background is estimated with an innovative data-driven method based on orthonormal functions. The observed $b$-tagged dijet invariant mass spectrum is compatible with the background-only hypothesis. Upper limits at 95% confidence level on a heavy vector-boson production cross section times branching ratio to a pair of $b$-quarks are derived.